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Abstract. We present a novel exact algorithm for the minimum graph
bisection problem, whose goal is to partition a graph into two equally-
sized cells while minimizing the number of edges between them. Our al-
gorithm is based on the branch-and-bound framework and, unlike most
previous approaches, it is fully combinatorial. We present stronger lower
bounds, improved branching rules, and a new decomposition technique
that contracts entire regions of the graph without losing optimality guar-
antees. In practice, our algorithm works particularly well on instances
with relatively small minimum bisections, solving large real-world graphs
(with tens of thousands to millions of vertices) to optimality.

1 Introduction

We consider the minimum graph bisection problem. Its input is an undirected,
unweighted graph G = (V,E), and its goal is to partition V into two sets A
and B such that |A|, |B| ≤ d|V |/2e and the number of edges between A and B
(the cut size) is minimized. This fundamental combinatorial optimization prob-
lem is a special case of graph partitioning, which asks for arbitrarily many cells.
It has numerous applications, including image processing [43, 47], computer vi-
sion [32], divide-and-conquer algorithms [34], VLSI circuit layout [5], distributed
computing [35], and route planning [13]. Unfortunately, the bisection problem
is NP-hard [20] for general graphs, with a best known approximation ratio of
O(log n) [38]. Only some restricted graph classes, such as grids without holes [17]
and graphs with bounded treewidth [27], have known polynomial-time solutions.

In practice, there are numerous general-purpose heuristics for graph parti-
tioning, such as METIS [30], SCOTCH [11, 37], Jostle [46], and KaFFPaE [40].
Successful heuristics tailored to particular graph classes, such as DibaP [36] (for
meshes) and PUNCH [14] (for road networks), are also available. These algo-
rithms are quite fast (often running in near-linear time) and can handle very
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large graphs, with tens of millions of vertices. They cannot, however, prove opti-
mality or provide approximation guarantees. Moreover, most of these algorithms
only perform well if a certain degree of imbalance is allowed.

There is also a vast literature on practical exact algorithms for graph bisection
(and partitioning), mostly using the branch-and-bound framework [33]. Most
algorithms use sophisticated machinery to obtain lower bounds, such as multi-
commodity flows [41, 42] or linear [2, 6, 19], semidefinite [1, 2, 29], and quadratic
programming [24]. Computing such bounds is quite expensive, however, in terms
of time and space. As a result, even though the branch-and-bound trees can be
quite small for some graph classes, published algorithms can only solve instances
of moderate size (with hundreds or a few thousand vertices) to optimality, even
after a few hours of processing. (See Armbruster [1] for a survey.) Combinatorial
algorithms [18] can offer a different tradeoff: they provide weaker lower bounds,
but compute them much faster (often in sublinear time). This works well for
random graphs with up to 100 vertices, but does not scale to larger instances.

This paper introduces a new exact algorithm for graph bisection. We use
novel combinatorial lower bounds that can be computed in near-linear time in
practice. Even so, these bounds are quite strong, and can be used to find opti-
mum solutions to real-world graphs with remarkably many vertices (more than a
million for road networks, or tens of thousands for VLSI and mesh instances). To
the best of our knowledge, our method is the first to find exact solutions for in-
stances of such scale. In fact, it turns out that the running time of our algorithm
depends more on the size of the bisection than on the size of the graph.

Our paper has four main contributions. First, we introduce (in Section 3) new
and improved combinatorial lower bounds that significantly strengthen previous
bounds. Second, we propose (in Section 4) careful branching rules that help to
exploit the full potential of our bound. Third, Section 5 introduces a new decom-
position technique that boosts performance substantially: it finds the optimum
solution by solving a small number of (much easier) subproblems independently.
Finally, Section 6 presents a careful experimental analysis of our techniques.

2 Preliminaries

Let G = (V,E) denote the input graph, with n = |V | vertices and m = |E|
edges. Each vertex v ∈ V has an integral weight w(v), and each edge e ∈ E has
an integral cost c(e). Let W =

∑
v∈V w(v). A partition of G is a partition of V ,

i.e., a set of subsets of V which are disjoint and whose union is V . We say that
each such subset is a cell, whose weight is defined as the sum of the weights of
its vertices. The cost of a partition is the sum of the costs of all edges whose
endpoints belong to different cells. A bisection is a partition into two cells. A
bisection is ε-balanced if each cell has weight at most (1 + ε)dW/2e. If ε = 0,
we say the partition is perfectly balanced (or just balanced). The minimum graph
bisection problem is that of finding the minimum-cost balanced bisection.

To simplify exposition, unless otherwise noted we consider the unweighted,
balanced version of the problem, where w(v) = 1 for all v ∈ V , c(e) = 1 for all



e ∈ E, and ε = 0. We must therefore partition G into two cells, each with weight
at most dn/2e, while minimizing the number of edges between cells.

A standard technique for finding exact solutions to NP-hard problems is
branch-and-bound [21, 33]. It performs an implicit enumeration by dividing the
original problem into two or more slightly simpler subproblems, solving them
recursively, and picking the best solution found. Each node of the branch-and-
bound tree corresponds to a distinct subproblem. In a minimization context,
the algorithm keeps a global upper bound U on the solution of the original
problem, which can be updated as the algorithm finds improved solutions. To
process a node in the tree, we first compute a lower bound L on any solution to
the corresponding subproblem. If L ≥ U , we prune the node: it cannot lead to a
better solution. Otherwise, we branch, creating two or more simpler subproblems.

In the concrete case of graph bisection, each node of the branch-and-bound
tree corresponds to a partial assignment (A,B), where A,B ⊆ V and A∩B = ∅.
We say the vertices in A or B are assigned, and all others are free (or unassigned).
This node implicitly represents all valid bisections (A+, B+) that are extensions
of (A,B), i.e., such that A ⊆ A+ and B ⊆ B+. In particular, the root node,
which represents all valid bisections, has the form (A,B) = ({v}, ∅). (Note that
the root can fix an arbitrary node v to one cell to break symmetry.)

To process an arbitrary node (A,B), we must compute a lower bound L(A,B)
on the value of any extension (A+, B+) of (A,B). The fastest exact algorithms [1,
2, 6, 19, 24, 29] usually apply mathematical programming techniques to find lower
bounds. In this paper, we use only combinatorial bounds. In particular, our basic
algorithm uses the well-known [8, 14] flow bound : the minimum s–t cut between A
and B. It is a valid lower bound because any extension (A+, B+) must separate
A from B. If the minimum cut happens to be balanced, we can prune (and
update U , if applicable). Otherwise, we choose a free vertex v and branch on it,
generating subproblems (A ∪ {v}, B) and (A,B ∪ {v}).

The flow lower bound can only work well when A and B have similar sizes;
even in this case, the corresponding cuts are often far from balanced, with one
side containing almost all vertices. This makes the flow bound rather weak by
itself. To overcome these issues, we introduce a new packing lower bound.

3 The Packing Lower Bound

Let (A,B) be a partial assignment. To make it a balanced bisection, at least
bn/2c−|A| free vertices must be assigned to A, obtaining an extended set A+. (A
similar argument can be made for B.) Suppose that, for each possible extension
A+ of A, we could compute the maximum flow f(A+) between B and A+. Let
f∗ be the minimum such flow value (over all possible A+); f∗ is clearly a lower
bound on the value of any bisection consistent with (A,B). Finding f∗ exactly
seems expensive; instead, we propose a fast algorithm to lower bound f∗.

It works as follows (see Fig. 1). Let G′ = G \ (A ∪ B) be the subgraph of G
induced by the vertices that are currently unassigned, and let R be the set of
vertices of G′ with at least one neighbor in B (in G). We partition the vertices
in G′ into connected cells, each containing at most one element of R. (Any



Fig. 1. The packing bound. Filled circles are vertices in B; their free neighbors (squares)
form a set R. Left: We partition the free vertices into connected cells, each with at
most one vertex of R. Middle: Given an extension A+ (hollow circles), the number of
nontrivial cells it touches (8) is a lower bound on the minimum (B, A+) cut. Right:
The extension that hits the fewest cells (3) is a lower bound on any valid extension.

such partition is valid; as we shall see, we get better lower bounds if the cells
containing elements in R are large and have similar sizes.) We say that a cell C
is nontrivial if it contains exactly one element from R; we call this element the
root of the cell and denote it by r(C). Cells with no element from R are trivial.

Lemma 1. Let A+ be a valid extension of A, and let c(A+) be the number of
nontrivial cells hit by A+. Then c(A+) is a lower bound on the maximum flow
f(B,A+) from B to A+.

Proof. We claim we can find c(A+) disjoint paths between A+ and B, each in
a different nontrivial cell. Take a nontrivial cell C containing an element v from
A+. Because the cell is connected, there is a path P within C between v and its
root r(C). Because r(C) belongs to R, there is an edge e (in the original graph
G) between r(C) and a vertex w in B. The concatenation of P and e is a path
from A+ to B. Since any valid extension must contain at least one edge from
each of the c(A+) disjoint paths, the lemma follows.

Recall that we need a lower bound on any possible extension A+ of A. We
get one by finding the extension for which Lemma 1 gives the lowest possible
bound (for a fixed partition into connected cells). To build this extension, we
use a greedy packing algorithm. First, pick all vertices in trivial cells; because we
cannot associate these cells with paths, they do not increase the lower bound.
From this point on, we must pick vertices from nontrivial cells. Since the lower
bound increases by one regardless of the number of vertices picked in a cell, we
should pick entire cells at once (after one vertex is picked, others in the cell are
free—they do not increase the bound). The optimal strategy is to pick cells in
decreasing order of size, stopping when the sum of the sizes of all picked cells
(trivial and nontrivial) is at least bn/2c−|A|. We have thus shown the following:

Theorem 1. The greedy packing algorithm finds a lower bound on the value of
any bisection consistent with (A,B).

Computing Packing Lower Bounds. The packing lower bound is valid for any
partition, but its quality depends strongly on which one we pick. We should



choose the partition that forces the worst-case extension A+ to hit as many
nontrivial cells as possible. This means minimizing the total size of the trivial
cells, and ensuring all nontrivial cells have the same number of vertices. This
problem is hard [12, 10], but we propose two heuristics that work well in practice.

The first is a constructive algorithm that builds a reasonable initial partition
from scratch. Starting from |R| unit cells (each with one element of R), in each
step it adds a vertex to a cell whose current size is minimum. This algorithm
can be implemented in linear time by keeping with each cell C a list E+(C) of
potential expansion edges, i.e., edges (v, w) such that v ∈ C and w 6∈ C. Vertices
that are not reachable from R are assigned to trivial cells. As the algorithm
progresses, some cells will run out of expansion edges, as all neighboring vertices
will already be taken. This may lead to very unbalanced solutions.

To improve the partition, we use our second heuristic: a local search routine
that makes neighboring cells more balanced by moving vertices between them.
To do so efficiently, it maintains a spanning tree for each nontrivial cell C, rooted
at r(C). Initially, this is the tree built by the constructive algorithm.

r(C2)r(C1)
w

v

⇓
r(C2)r(C1)

w
vu∗

Fig. 2. Packing local search. Top: The
boundary edge (v, w) determines a path
between cells C1 and C2 (triangles are
subtrees). Bottom: A different split of
the path induces a more even partition.

The local search moves entire sub-
trees between neighboring cells. It pro-
cesses one boundary edge at a time. Con-
sider one such edge (v, w), with v ∈ C1

and w ∈ C2, and assume cell C1 has more
vertices than C2. To improve the solu-
tion, we attempt to move an entire sub-
tree from C1 to C2. We find the best sub-
tree to switch by traversing the path (in
the spanning tree of C1) from v to r(C1).
(See Fig. 2.) Each vertex u on the path is
associated with a possible move: remov-
ing the subtree rooted at u from C1 and
inserting it into C2. Among these, let u∗

be the vertex leading to the most balanced final state (in which the sizes of C1

and C2 are closest). If this is more balanced than the current state, we switch.
The local search runs until a local optimum, when no improving switch exists.

To implement it efficiently, we keep track of boundary edges and subtree sizes
explicitly. This ensures the algorithm runs in polynomial (but superlinear) worst-
case time. In practice, however, we reach a local optimum after very few moves,
and the local search is about as fast as the constructive algorithm.

Combining Packing and Flows. We cannot simply add the packing- and flow-
based bounds to obtain a unified lower bound, since they may interfere with one
another. It is easy to see why: each method finds (implicitly) a set of edge-disjoint
paths such that at least one edge from each such path must be in the solution.
(For the flow bound, these are the paths in the flow decomposition.) Adding the
bounds would require the sets of paths found by each algorithm to be mutually
disjoint, which is usually not the case. To combine the bounds properly, we first
compute the flow bound, then a packing bound that takes the flow into account.



More precisely, we first compute a flow bound f as usual. We then remove all
flow edges from G, obtaining a new graph Gf . Finally, we compute the packing
lower bound p on Gf . Now f + p is a valid lower bound on the cost of the
best bisection extending the current assignment (A,B), since there is no overlap
between the paths considered by each method (flow and packing).

This approach finds valid lower bounds regardless of which edges are in the
flow, but its packing portion is better if it has more edges to work with. We there-
fore favor flows with few edges: instead the standard push-relabel approach [23],
we use an augmenting-path algorithm that greedily sends flows along shortest
paths. We implemented a simplified version of IBFS (incremental breadth first
search) [22], which is about as fast as push-relabel on our test instances.

Forced Assignments. Assume we have already computed the flow bound f fol-
lowed by an additional packing lower bound p (using the neighbors of B as
roots). For a free vertex v, let N(v) be its set of neighbors in Gf (the graph
without flow edges), let degGf

(v) = |N(v)|, and let C be the cell (in the packing
partition) containing v. We can often use logical implications to assign v to one
of the sides (A or B) without actually branching on it. The idea is simple: if we
can show that assigning v to one side would increase the lower bound to at least
match the upper bound, we can safely assign v to the other side.

First, consider what would happen if v were added to A. Let x(v), the ex-
pansion of v, be the number of nontrivial cells (from the packing bound) that
contain vertices from N(v). Note that 0 ≤ x(v) ≤ degGf

(v). Assigning v to A
would create x(v) disjoint paths from A to B, effectively increasing the flow
bound to f ′ = f + x(v). Note, however, that f ′ + p may not be a valid lower
bound, since the new paths may interfere with the “pure” packing bound. In-
stead, we compute a restricted packing lower bound p′, taking as trivial the cells
that intersect N(v) (we just assume they belong to A+). If f ′ + p′ is at least as
high as the current upper bound, we have proven that v must be assigned to B.
This test tends to succeeds only when the cells are unevenly balanced (otherwise
the increase in flow is offset by a decrease in the packing bound).

Conversely, consider what would happen if v were added to B: we could split
C into degGf

(v) cells, one rooted at each neighbor of v. The size of each new cell
can be computed in constant time, since we know the subtree sizes within the
original spanning tree of C. We then recompute the packing lower bound (using
the original cells, with C replaced by the newly-created subcells) and add it to
the original flow bound f . If this at least matches the current upper bound, then
we have proven that v must actually be assigned to A. This works particularly
well for trivial cells (the packing bound is unlikely to change for nontrivial ones).

Note that these forced assignments only work when lower and upper bounds
are very close. Their main benefit is to eliminate vertices that are not good can-
didates for branching. Since the tests are very fast, they are still worth running.

Extensions. We can easily generalize the packing bound to handle ε-balanced
partitions. In this case, cells must have size at most M+ = b(1+ ε)dn/2ec and at
least M− = n−M+; the packing bound must distribute M− vertices instead of
bn/2c. Dealing with weighted vertices is also quite simple. The packing bound is



the minimum number of cells containing at least half of the total weight. When
creating the packing partition, we should therefore strive to make cells balanced
by weight instead of number of vertices; this can easily be incorporated into the
local search. To handle small integral edge weights, we can simply use parallel
edges. Additional extensions (such as arbitrary edge weights or partitions into
more than two cells) are possible, but more complicated.

4 Branching

If the lower bound for a given subproblem (A,B) is not high enough to prune it,
we must branch on an unassigned vertex v, creating subproblems (A ∪ {v}, B)
and (A,B ∪ {v}). Our experiments show that the choice of branching vertices
has a significant impact on the size of the branch-and-bound tree (and the total
running time). Intuitively, we should branch on vertices that lead to higher lower
bounds on the child subproblems. Given our lower-bounding algorithms, we can
infer some properties the branching vertex v should have.

First, the flow and packing bounds would both benefit from having the as-
signed vertices evenly distributed (on both sides of the optimum bisection). Since
we do not know what the bisection is, a reasonable strategy is to spread vertices
over the graph by branching on vertices that are far from both A and B. (Note
that a single BFS can find the distances from A∪B to all vertices.) We call this
the distance criterion. Moreover, we prefer to branch on vertices that appear in
large cells (from the packing bound). By allowing such cells to be split, we can
improve the packing bound. Finally, to help our flow bound, we would like to
send a large amount of flow from a branching vertex v to A or B. This suggests
branching on vertices that are well-connected to the rest of the graph. A proxy
for connectivity is the degree of v, a trivial upper bound on any flow out of v.

In practice, connectivity tends to be more important than the other criteria,
so we branch on the vertex v that maximizes q(v) = dist(v) · csize(v) · conn(v)2,
where dist(v) indicates the distance from v to the closest assigned vertex, csize(v)
is the size of the cell containing v, and conn(v) is the connectivity (degree) of v.

For some graphs (such as road networks), degrees are poor proxies for connec-
tivity, since high-degree vertices are often separated by a small cut from most of
the graph [14]. We could obtain a more robust measure of connectivity by reusing
the packing algorithm described in Section 3. For each vertex v, we can run the
algorithm with A = ∅ and B = {v} to find a partition of V \{v} into deg(v) cells.
If v is well-connected, all cells should have roughly the same size; if not, some
cells will be much smaller than others. Computing this bound for every vertex
in the graph would be quite expensive, so we actually only sample (in a pre-
processing step) a few high-degree vertices to better estimate their connectivity.
This filtering routine helps eliminate obviously bad branching vertices.

5 Contraction

Both lower bounds we consider depend crucially on the degrees of the vertices
already assigned. More precisely, let DA and DB be the sum of the degrees of all



vertices already assigned to A and B, respectively, with DA ≤ DB (without loss
of generality). It is easy to see that the flow bound cannot be larger than DA,
and that the packing bound is at most DB/2 (when the regions are perfectly bal-
anced). If all vertices have small constant degree (as in meshes, VLSI instances,
and road networks, for example), our branch-and-bound algorithm cannot prune
anything until deep in the tree. Arguably, the dependency on degrees should not
be so strong. The fact that increasing the degrees of only a few vertices could
make a large instance substantially easier to solve is counter-intuitive.

A natural approach to deal with this is branching on entire regions (connected
subgraphs) at once. We would like to pick a region and add all of its vertices
to A in one branch, and all to B in the other. Since the “degree” of the region
(its number of outside neighbors) is substantially higher, lower bounds should
increase much faster as we traverse the branch-and-bound tree. The obvious
problem with this idea is that the optimal bisection may actually split the region
in two. Assigning the entire region to A or to B does not exhaust all possibilities.

One way to overcome this is to make the algorithm probabilistic. Intuitively,
if we contract a small number of random edges, with reasonable probability none
of them will actually be cut in the minimum bisection. If this is the case, the
optimum solution to the contracted problem is also the optimum solution to the
original graph. We can boost the probability of success by repeating this entire
procedure multiple times (with multiple randomly selected contracted sets) and
picking the best result found. With high probability, it will be the optimum.

Probabilistic contractions are a natural approach for cut problems, and in-
deed known. For example, they feature prominently in Karger and Stein’s ran-
domized global minimum-cut algorithm [28], which uses the fact that contract-
ing a random edge is unlikely to affect the solution. This idea has been used for
the minimum bisection problem as well. Bui et al. [8] use contraction within a
polynomial-time method which, for any input graph, either outputs the minimum
bisection or halts without output. They show the algorithm has good average
performance on the class of d-regular graphs with small enough bisections.

Since our goal is to find provably optimum bisections, probabilistic solutions
are inadequate. Instead, we propose a contraction-based decomposition algo-
rithm, which is guaranteed to output the optimum solution for any input. It is
(of course) still exponential, but for many inputs it has much better performance
than our standard branch-and-bound algorithm.

The algorithm is as follows. Let U be an upper bound on the optimum
bisection. First, partition E into U + 1 disjoint sets (E0, E1, . . . , EU ). For each
subset Ei, create a corresponding (weighted) graph Gi by taking the input graph
G and contracting all the edges in Ei. Then, use our standard algorithm to find
the optimum bisection Ui of each graph Gi independently, and pick the best.

Theorem 2. The decomposition algorithm finds the minimum bisection of G.

Proof. Let U∗ ≤ U be the minimum bisection cost. We must prove that
min(Ui) = U∗. First, note that Ui ≥ U∗ for every i, since any bisection of
Gi can be trivially converted into a valid bisection of G. Moreover, we argue



that the solution of at least one Gi will correspond to the optimum solution of
G itself. Let E∗ be the set of cut edges in an optimum bisection of G. (If there is
more than one optimum bisection, pick one arbitrarily.) Because |E∗| = U∗ and
the Ei sets are disjoint, E∗ ∩ Ei can only be nonempty for at most U∗ sets Ei.
Therefore, there is at least one j such that E∗ ∩ Ej = ∅. Contracting the edges
in Ej does not change the optimum bisection, proving our claim.

The decomposition algorithm solves U + 1 subproblems, but the high-degree
vertices introduced by contraction should make each subproblem much easier
for our branch-and-bound. Besides, the subproblems are not completely inde-
pendent: they can all share the same best upper bound. In fact, we can think
of the algorithm as a single branch-and-bound tree with a special root node
that has U + 1 children, each responsible for a distinct contraction pattern. The
subproblems are not necessarily disjoint (different branches may visit the same
partial assignment), but this does not affect correctness.

Decomposition is correct regardless of how edges are partitioned among sub-
problems, but performance may vary significantly. To make all subproblems have
comparable degree of difficulty, we allocate roughly the same number of edges
to each subproblem. Moreover, the choice of which edges to allocate to each
subproblem Gi also matters. The effect on the branch-and-bound algorithm is
more pronounced if we create vertices with much higher degree, which we achieve
by assigning to Ei edges that induce relatively large connected components (or
clumps) in G. (If all edges in Ei are disjoint, the degrees of the contracted
vertices in Gi will not be much higher that those of the remaining vertices.)
Moreover, the shape of each clump matters: all else being equal, we would like
its expansion (number of neighbors) to be as large as possible; we therefore make
sure our clumps are paths in the graph. The maximum path length s is set to⌈
min

{
4U, m

10U

}⌉
to balance two properties: clumps should not be much bigger

than the optimum bisection, and each subproblem should have multiple clumps.
We perform the decomposition in two stages: the clump generation partitions
all the edges in the graph into clumps, while the allocation stage ensures that
each subproblem is assigned a well-spread subset of the clumps of comparable
total size. See the full paper [15] for more details.

6 Experiments

We implemented our algorithms in C++ using Visual Studio 2010. We ran most
experiments on one core of an Intel Core 2 Duo E8500 running Windows 7 En-
terprise at 3.16 GHz with 4GB of RAM. For a few harder instances (clearly
marked), we ran a distributed version of the code using the DryadOpt frame-
work [7], which is written in C# and calls our native C++ code to solve individ-
ual nodes of the branch-and-bound tree. Distributed executions use up to 128
machines with two 2.6 GHz dual-core AMD Opteron processors (and 16 GB of
RAM) each; we report the total CPU time across all machines. Unless otherwise
mentioned, we find balanced partitions (ε = 0).



Parameter Evaluation. We start by considering the effects of each improve-
ment we propose on performance. For concreteness, we focus on two instances:
alue5067 is a VLSI instance (a grid graph with holes used as a benchmark in-
stance for the Steiner problem in graphs [31]) with 3524 vertices, 5560 edges,
and optimum bisection opt = 30; mannequin is a mesh (triangulation) used in
computer graphics studies [39] with 689 vertices, 2043 edges, and opt = 61.

Figure 3 shows the running times of several versions of our algorithm as the
input bound U varies from 10 to opt + 1. (When U ≤ opt , our algorithm simply
proves that U is a valid lower bound.) Each version builds on the previous one.
Version A, the most basic, uses the flow bound, the packing bound (using only
the constructive algorithm to find cells), and branches on random vertices. Ver-
sion B improves the packing partition using local search. Version C adds forced
assignments. Versions D and E improve the branching criteria (from random):
D uses distances, cell sizes, and degrees, while E also uses filtering to identify
well-connected branching vertices. Versions F and G decompose the problem
into U +1 subproblems; F partitions the edges at random, while G uses clumps.

For alue5067, each version of the algorithm is faster than the previous one.
The effect is minor for some features, such as forced assignments and random
decomposition (since the subproblems it generates are not much easier). Other
improvements (notably local search, sophisticated branching, and decomposition
by clumps) clearly improve the asymptotic performance of the algorithm. Finally,
we note that the packing bound itself leads to huge speedups: using only the flow
bound, our algorithm would take more than 5 minutes for any U ≥ 3.

The results for mannequin are similar, although decomposition is not as help-
ful (it even hurts if edges are distributed at random), since mannequin has higher
degrees and much fewer fixed edges per subproblem (33) than alue5067 (179).

For both instances, Version G spends half the time to process each node
on the flow computation, with the other half split roughly evenly among the
remaining routines: constructive, local search, forced assignments, and branch-
ing. This indicates that processing a branch-and-bound node takes essentially
linear time. Recall that filtering is done in a preprocessing stage (separately for
each subproblem). For alue5067 (with U = opt + 1), it is almost as expensive
as traversing the actual branch-and-bound tree; for mannequin, it takes roughly
15% of the total time (but does not help as much).
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Fig. 3. Running times of increasingly sophisticated versions of our algorithm as a
function of the upper bound U on the inputs alue5067 (left) and mannequin (right).
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Fig. 4. Running times on various synthetic graph classes.

Finally, we note that all versions of the algorithm have exponential depen-
dence on U . This suggests an obvious approach for finding the optimum bisection
opt when it is not known: run the algorithm repeatedly with increasing values
of U , and it will find the solution as soon as it gets an input U > opt . The total
time should not be much higher than running only from opt +1. Since our focus
is on lower bounds, we use U = opt + 1 for all remaining experiments.

Asymptotics. For a better understanding of the asymptotic behavior or our
method, we run it on synthetic graphs. Here we test version D (without de-
composition) on three graph classes. The first consists of Delaunay graphs, each
representing the Delaunay triangulation of n points picked at random in the
unit square. The second class consists of 6-regular random graphs, built as the
union of 6 random perfect matchings. Finally, we consider 6-regular graphs with
planted bisections of size 30 (we take the union of two 6-regular random graphs
with n/2 vertices each and add 30 random edges between them). These three
classes have similar density (m = 3n), but differ significantly on the expected
minimum bisection size: roughly 2

√
n for Delaunay, Θ(n) for random graphs,

and exactly 30 for planted bisections. Figure 4 (left) shows the average running
times (over 10 runs) of our algorithm as n varies (always with U = opt + 1).

It is clear that running times depend more strongly on the bisection than on
graph size. Our method quickly becomes impractical for random graphs (it takes
more than two minutes on graphs with 80 nodes), but is much more practical for
Delaunay triangulations. For random graphs with small planted bisections, the
running time is essentially linear in n: all branch-and-bound trees have roughly
1050 nodes. Figure 4 (right) also considers 6-regular random graphs with planted
bisections, but now with n = 1000 and varying bisection size. As expected,
running times increase exponentially with the bisection.

DIMACS Instances. This analysis indicates our algorithm should be able to han-
dle fairly large real-world inputs, as long as their optimum bisection is not too
large. To test this, we consider instances from the 10th DIMACS Implementation
Challenge [3]. Since the challenge is meant to evaluate mainly heuristics, most
instances are quite large (up to hundreds of millions of vertices) and have large
bisections. Still, our algorithm can solve a wide variety of (smaller) instances



Table 1. Number of branch-and-bound nodes (bb) and total CPU time on DIMACS
Challenge instances with ε = 0; data uses DryadOpt, and all other runs are sequential.

class name n m opt bb time [s]

clustering karate 34 78 10 4 0.00
chesapeake 39 170 46 110 138 3.08
dolphins 62 159 15 110 0.01
lesmis 77 820 61 3 905 756 230.30
polbooks 105 441 19 8 0.00
football 115 613 61 7 301 1.08
power 4 941 6 594 12 94 0.21

delaunay delaunay n10 1 024 3 056 63 14 361 18.25
delaunay n11 2 048 6 127 86 65 080 175.73
delaunay n12 4 096 12 264 118 474 844 2 711.73
delaunay n13 8 192 24 547 156 3 122 845 37 615.97

streets luxembourg 114 599 119 666 17 786 91.17

walshaw data 2 851 15 093 189 495 569 759 5 750 387.82
3elt 4 720 13 722 90 12 707 82.10
uk 4 824 6 837 19 1 624 3.81
add32 4 960 9 462 11 225 2.80
whitaker3 9 800 28 989 127 7 044 133.04
fe 4elt2 11 143 32 818 130 10 391 224.26
4elt 15 606 45 878 139 25 912 769.35

to optimality. We consider instances from four classes: clustering, Delaunay tri-
angulations, road networks, and instances from Walshaw’s graph partitioning
repository [45]. For clustering instances, which are smaller, we use version D of
our algorithm; for the three remaining series (delaunay, streets, and walshaw),
which are larger and sparse, we also use decomposition by clumps.

Table 1 shows, for each instance, the number of nodes in the branch-and-
bound tree (bb) and the total running time in seconds. As expected, running
times depend more heavily on the size of the bisection than on the graph itself.
In particular, our algorithm could easily solve luxembourg (a road network), even
though it has more than 100 thousand vertices. It can also find the minimum
bisections of reasonably large delaunay graphs, which are Delaunay triangulations
of random points on the plane. Note that decomposition makes the algorithm
asymptotically faster than the version tested in Figure 4. For several Walshaw
instances, our algorithm proves (for the first time, to the best of our knowledge)
that the best previously known bisections found by heuristics [4, 9, 25, 26, 44] are
indeed optimal. Finally, we also find exact solutions for some small clustering
graphs, whose solutions are much larger relative to the graph size.

We also tested instances from the redistricting class with arbitrary vertex
weights and (unit edge costs), using version D and DryadOpt. These instances are
hard for our method for ε = 0 (it is not tuned to handle zero-weight vertices), but
Table 2 shows3 that our algorithm can still find optimal solutions for ε = 0.03.

We omit detailed results on non-DIMACS instances due to space constraints,
and refer the reader to the full paper [15]. It shows that we can solve VLSI

3 An earlier version of this paper misstated the solution value for ct2010.



Table 2. Results on redistricting instances with ε = 0.03 (using DryadOpt).

name n m opt bb time [s]

de2010 24 115 58 028 36 216 7
ri2010 25 181 62 875 107 36 976 4 702
vt2010 32 580 77 799 112 31 483 4 896
nh2010 48 837 117 275 146 1 102 716 288 090
ct2010 67 578 168 176 150 347 130 180 509
me2010 69 518 167 738 140 1 321 389 565 727
nj2010 169 588 414 956 150 875 842 1 184 886

instances and computer graphics meshes with tens of thousands of vertices, and
road networks with more than a million. In fact, for graphs with small bisections,
our method often outperforms the best mathematical programming approaches,
such as those of Armbruster et al. [1, 2] and Hager et al. [24]. These algorithms
have much better performance on small graphs with large bisections, however.

7 Final Remarks

We presented a novel branch-and-bound algorithm that can find exact solutions
to remarkably large real-world instances, particularly those with small bisec-
tions. The resulting algorithm is quite practical, and could conceivably be used
within graph partitioning heuristics, which often need to find bisections of small
subproblems [11, 14, 30, 40]. It may be possible to obtain further speedups: im-
proved branching heuristics, primal algorithms, and strengthened versions of the
packing bound (for weighted edges) should all help. A potential topic for future
research is whether the techniques we propose (particularly decomposition, but
also the packing lower bound) can be effectively integrated into mathematical
programming methods. A combination of recent results [16, 27] suggests that
the minimum bisection problem is fixed-parameter tractable (parameterized by
minimum bisection size) for planar and almost planar graphs, such as road net-
works, VLSI, and meshes. It would be interesting to know whether similar ideas
could give nontrivial performance guarantees to some variant of our algorithm.

Acknowledgments. We thank Diego Nehab for the benchmark meshes and visual-
ization tools, Tony Wirth for discussions on the hardness of various subproblems.
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